Abstract

The asperity wear of rock joints significantly affects their shear behaviour. This study discusses the wear damage of the asperities on the joint surface, highlighting the roughness degradation characteristics during the shear process. The direct shear experiment of artificial specimens containing rock joints was conducted under different normal stresses based on three-dimensional scanning technology. These experimental results showed the contribution of joint wear to roughness degeneration, such as the height, zone, and volume of asperity degeneration. The wear coefficient of the rock joint was obtained based on the volume wear of asperities in the laboratory experiment. The functional relationship between the friction coefficient and wear coefficient is subsequently determined. To quantitatively analyse the wear damage of a joint surface, a calculation method for determining the wear depth of the rock joint after shearing was proposed based on wear theory. The relationship between the ultimate dilation and wear depth was analysed. A coefficient m, which can describe the damage degree of the joint surface, and a prediction method of joint surface roughness after shearing are established. Good agreement between analytical predictions and measured values demonstrates the capability of the developed model. Lastly, the sensitivity factors on the wear depth are explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.