Abstract

The deployment of proppant to fracture shear is a promising approach to stimulating hydraulic permeability in fractured reservoirs. However, the interactive effects of proppant and surface roughness have not been clearly revealed. To better understand this concern, direct shear tests (DSTs) are implemented on 2D rough fractures with a joint roughness coefficient (JRC) varying from 4 to 6 and 18 to 20 under propped conditions. The results show that peak shear strength is positively proportional to asperity amplitude. The highest peak shear strength is determined with a JRC of 14–16 due to it having the highest asperity of 6.34 mm. The peak shear load was decreased significantly by deploying the proppant. Shear damage only occurs in the localized zone where the upper–lower asperities contact. The shear dilatancy was attributed to both the “shear climbing” effects and the shear damage that caused the frictional slip. The proppants weaken the climbing effect but also prevent the shear damage that in turn promotes shear dilatancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call