Abstract
High-strength steel and ultra-high-performance concrete (UHPC) can increase structural resistance and reduce material consumption efficiently. However, current design specifications do not permit the use of them in concrete-filled steel tube members due to the lack of research. To address it, this paper experimentally investigates the shear behavior of square ultra-high performance concrete-filled high-strength steel tube (referred to as CuFTh hereafter) members. A total of 20 CuFTh specimens were tested, considering the effects of the span-to-depth ratio, width-to-thickness ratio of the steel tube, yield stress of steel, and fiber volume content of UHPC. The test results showed that: (i) the failure mode was governed by the shear span-to-depth ratio (a/H), including shear failure (a/H = 0.2 or 0.5) and combined shear-flexural failure (a/H = 0.8 or 1.0); (ii) the shear strength increased with decreasing shear span-to-depth ratio and the width-to-thickness ratio of the steel tube; (iii) increasing the yield stress of steel and fiber volume content of UHPC improved the shear strength. The applicability of current specifications for estimating the shear strength of square CuFTh members was evaluated. It was shown that CECS 28 (CECS 2012) had the most reasonable estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.