Abstract

Repairing corroded flexural-deficient reinforced concrete (RC) structures using a hybrid scheme with stainless steel (SS) rebars and carbon-fiber-reinforced polymer (CFRP) sheets revealed excellent structural performance and contributes to lower maintenance costs in the remaining service life of the repaired structure. However, although cutting the bottom arm of stirrups in a hybrid repair method could affect the structural performance of shear-critical RC beams since this effect was not investigated in the past research. In this paper, structural performance of a group of shear-deficient RC beams repaired using the hybrid method is investigated experimentally to examine the effect of cutting the bottom arm of stirrup on the shear capacity of the repaired beams. The test variables included the longitudinal reinforcement types (i.e. carbon and SS), shear reinforcement configurations, and CFRP sheet wrapping schemes. Experimental results demonstrate that cutting the bottom arm of stirrup for replacing the corroded tensile rebar could significantly reduce the shear capacity of the retrofitted beams. Therefore, strengthening using CFRP sheet is needed to restore the shear performance of the retrofitted beams. Test results revealed that complete wrapping of CFRP sheet is effective to overcome the shear deficiency due to cutting the bottom arm of stirrup in the shear-critical RC beams. In addition, the effectiveness of CFRP sheet wrapping schemes on shear performance of SS-RC beams is approximately identical with that of CS-RC beams. Finally, a design methodology to repair the corroded RC bridge using hybrid method is developed and presented based on bending and shear tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call