Abstract

We introduce a family of fast algorithms for 2-D parallel-beam tomographic backprojection. They aggregate the projections in a hierarchical structure involving the shearing and addition of sparsely sampled images. The algorithms achieve a computational cost of O(N(2) log P), when backprojecting an N x N pixel image from P projections. The algorithms provide a systematic means, guided by a Fourier-domain interpretation, to adjust and optimize the tradeoff between computational cost and accuracy. In an example with N = 512 and P = 1458 the algorithms provide high accuracy, with more than an order of magnitude reduction in operation counts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.