Abstract
Results on the shear flow of telechelic associative polymers using nonequilibrium molecular dynamics (NEMD) are presented. The particle stream velocities can be calculated from the peculiar velocities and the imposed velocity profile using a novel approach. The constitutive relationship stress-shear rate becomes nonmonotonic when the interaction force between hydrophobic sites is increased. This condition induces a steady banding flow, which arises under transient conditions as a local instability originated from the breakage of micellar aggregates, thus promoting the migration of these aggregates to regions of low velocity gradients. Here, for the first time, NEMD simulations predict the banding flow of associative polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.