Abstract

Here we report a shear bands-dominated deformation principle for the gradient material composed of two nanostructured gradient layers (NGLs) and a coarse-grained (CG) interior. Multiple shear bands form in the NGL to accommodate the applied strain. The magnitude of uniform elongation depends on shear band stability, and shear band stability is determined by the intensity of constraint between NGL and CG interior. Specifically, the stronger the constraint, the denser and more stable the shear bands dispersed in the NGL, thereby leading to larger uniform elongation. This finding sheds insight into the theoretical basis of harnessing dispersed stable shear bands in heterostructures by optimizing microstructure architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.