Abstract

We investigate the effects of polymer chains and nanoparticles on the deformation of a droplet in shear and extensional flow using computational modeling that accounts for both the solid and fluid phases explicitly. We show that under shear flow, both the nanoparticles and the encapsulated polymers reduce the shear-induced deformation of the droplet at intermediate capillary numbers. At high capillary numbers, however, long polymer chains can induce the breakup of the droplet. We find that the latter behavior is dependent on the nature of the imposed flow. Specifically, under extensional flow, long polymers inhibit the droplet breakup and reduce deformation. Overall, the findings provide guidelines for tailoring the stability of filled droplets under an imposed flow, and thus, the results can provide useful design rules in a range of technological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.