Abstract

AbstractFour metallocene polyethylenes (PE), one conventional low density polyethylene (LDPE), and one conventional linear low density polyethylene (LLDPE) were characterized in terms of their complex viscosity, storage and loss moduli, and phase angle at different temperatures. The effects of molecular weight, breadth of molecular weight distribution, and long‐chain branching (LCB) on the shear rheological properties of PEs are studied. For the sparsely long‐chain branched metallocene PEs, LCB increases the zero‐shear viscosity. The onsets of shear thinning are shifted to lower shear rates. There is also a plateau in the phase angle, δ, for these materials. Master curves for the complex viscosity and dynamic moduli were generated for all PE samples. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.