Abstract
The radial structure of the continuum spectrum of shear Alfvén and Alfvén-acoustic waves in the beta-induced Alfvén eigenmode (BAE) frequency range is modeled for tokamak plasmas in the presence of 3D effects obtained from the bifurcated MHD equilibrium reconstruction. Plasma compressibility and geodesic curvature effects responsible for the low-frequency continuum spectrum calculations are invoked. In the equilibrium calculations we find that the helically distorted MHD equilibria may exist even for the axisymmetric devices if q = 1 rational surfaces are present. The continuum calculations with the bifurcated equilibria lead to a frequency splitting between the highest frequency branch and the lowest frequency branch continua at the frequency accumulation point. Radially localised shifting of modes happens via coupling of the adjacent n − 1 continuum around an accumulation point. Our modelling (including 3D effects) correctly reproduces the phenomenon of continuum frequency splitting and provides a possible solution for the differences of few kHz in frequency splitting, which remained unexplained with the 2D kinetic calculations (Curran et al 2012 Plasma Phys. Control. Fusion 54 055001). The pressure scaling confirms the increase of helical excursion of the magnetic axis in equilibrium reconstruction and hence the range of continuum frequency splitting. In our calculations, the existence of low-frequency continua is in agreement with the experimentally observed low-frequency modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.