Abstract

While liquid foams have applications in an increasing number of industrial areas (food, cosmetic or petroleum industry), it remains difficult to non-invasively probe their structure and/or composition. Since the propagation of acoustic waves is very sensitive to parameters such that the liquid fraction, the bubble size distribution, or even the nature of the liquid phase, acoustic spectroscopy could be a very powerful tool to determine the structure and/or composition of liquid foams. In this context, we present an investigation of the acoustic properties of a useful and common foam, often considered as a model system: shaving foam. Phase velocity and attenuation of acoustic waves in a commercial shaving foam (Gillette) were measured over a broad frequency range (0.5 to 600 kHz), using four different experimental setups: an impedance tube (0.5-6 kHz), an acousto-optic setup based on Diffusive Wave Spectroscopy (0.4-10 kHz), and two transmission setups with narrow-band (40 kHz) and broad-band (60-600 kHz) transducers. We present the results and discuss the advantages and shortcomings of each setup in terms of a potential spectroscopy technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.