Abstract
We previously identified a new molecule, "SHATI/NAT8L," which has an inhibitory effect on methamphetamine (METH)-induced hyperlocomotion, sensitization, and conditioned place preference. Nevertheless, the extent of SHATI localization and its functions are only partially understood. In this study, we used the FLAG-tag method to investigate SHATI localization. We found that SHATI was localized to microtubules when expressed in COS7 cells and cortical primary neurons. This distribution of SHATI was less apparent after cells were treated with colchicine, a tubulin polymerization inhibitor that disrupts the microtubule structure. This finding suggests that SHATI is associated with microtubule structure. Interestingly, overexpression of SHATI in COS7 cells could attenuate the colchicine-induced decrease in acetylated microtubules, indicating that SHATI plays a role in stabilizing microtubules. Furthermore, we showed that Shati deletion impaired neurite elongation. In cortical primary neurons, neurite length and complexity in Shati-knockout (KO) mice were significantly decreased. In pyramidal neurons in the prefrontal cortex, dendrite length and complexity were also significantly decreased in Shati-KO mice compared with wild-type mice. These results suggest a novel function for SHATI, which may be a new member of the microtubule-associated protein family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Neuroscience Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.