Abstract

We study a more general model to generate random instances of Propositional Satisfiability (SAT) with n Boolean variables, m clauses, and exactly k variables per clause. Additionally, our model is given an arbitrary probability distribution (p_1, ..., p_n) on the variable occurrences. Therefore, we call it non-uniform random k-SAT. The number m of randomly drawn clauses at which random formulas go from asymptotically almost surely (a.a.s.) satisfiable to a.a.s. unsatisfiable is called the satisfiability threshold. Such a threshold is called sharp if it approaches a step function as n increases. We identify conditions on the variable probability distribution (p_1, ..., p_n) under which the satisfiability threshold is sharp if its position is already known asymptotically. This result generalizes Friedgut’s sharpness result from uniform to non-uniform random k -SAT and implies sharpness for thresholds of a wide range of random k -SAT models with heterogeneous probability distributions, for example such models where the variable probabilities follow a power-law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.