Abstract

Diffuse-interface models may be used to compute moving contact lines because the Cahn–Hilliard diffusion regularizes the singularity at the contact line. This paper investigates the basic questions underlying this approach. Through scaling arguments and numerical computations, we demonstrate that the Cahn–Hilliard model approaches a sharp-interface limit when the interfacial thickness is reduced below a threshold while other parameters are fixed. In this limit, the contact line has a diffusion length that is related to the slip length in sharp-interface models. Based on the numerical results, we propose a criterion for attaining the sharp-interface limit in computing moving contact lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.