Abstract

BackgroundPreviously sharpin has been identified as an endogenous inhibitor of β1-integrin activation by directly binding to a conserved region in the cytoplasmic tails (CTs) of the integrin β1-associated α subunits.MethodsHere we employed biochemical approaches and cellular analyses to evaluate the function and molecular mechanism of the sharpin-kindlin-1 complex in regulating β1-integrin activation.ResultsIn this study, we found that although the inhibition of sharpin on β1-integrin activation could be confirmed, sharpin had no apparent effect on integrin αIIbβ3 activation in CHO cell system. Notably, a direct interaction between sharpin and the integrin β1 CT was detected, while the interaction of sharpin with the integrin αIIb and the β3 CTs were substantially weaker. Importantly, sharpin was able to inhibit the talin head domain binding to the integrin β1 CT, which can mechanistically contribute to inhibiting β1-integrin activation. Interestingly, we also found that sharpin interacted with kindlin-1, and the interaction between sharpin and the integrin β1 CT was significantly enhanced when kindlin-1 was present. Consistently, we observed that instead of acting as an activator, kindlin-1 actually suppressed the talin head domain mediated β1-integrin activation, indicating that kindlin-1 may facilitate recruitment of sharpin to the integrin β1 CT.ConclusionTaken together, our findings suggest that sharpin may complex with both kindlin-1 and the integrin β1 CT to restrict the talin head domain binding, thus inhibiting β1-integrin activation.

Highlights

  • Sharpin has been identified as an endogenous inhibitor of β1-integrin activation by directly binding to a conserved region in the cytoplasmic tails (CTs) of the integrin β1-associated α subunits

  • We compared the roles of sharpin in regulating integrin α5β1 and integrin αIIbβ3 activation induced by either the talin head domain alone or the talin head domain plus kindlin-1 in CHO cells that express endogenous integrin α5β1 or CHO-αIIbβ3 cells that stably express exogenous integrin αIIbβ3

  • The talin head domain, kindlin-1 and sharpin that were fused with DsRed, EGFP and flag tags respectively were transiently expressed in CHO or CHO-αIIbβ3 cells

Read more

Summary

Introduction

Sharpin has been identified as an endogenous inhibitor of β1-integrin activation by directly binding to a conserved region in the cytoplasmic tails (CTs) of the integrin β1-associated α subunits. Among many integrin CT-binding partners, the talin head domain is an essential integrin activator that has been extensively studied [7,8,9]. The talin head domain can be released and interacts with the conserved NPxY motif and some membraneproximal residues in the integrin β CT, being able to unclasp the integrin α/β CT complex and trigger integrin activation [7, 11, 12]. Kindlin and the talin head domain can simultaneously bind to the integrin β CT and cooperatively support integrin activation [16, 17]. Kindlin binds to the second NxxY motif at the C-termini of integrin β CT, but kindlin itself has no capacity to unclasp the

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call