Abstract

Photonic nanojets (PNJs) generated from a single microsphere illuminated by higher-order radially polarized (RP) beams are investigated. The effects of the size parameters of higher-order RP beams, the refractive index, and radius of the dielectric microsphere on the full width at half-maximum and peak intensity of the PNJ are numerically discussed and qualitatively interpreted. The results show that the minimal width of the PNJ can be obtained by optimally adjusting the size parameter. The PNJ beam waist becomes gradually narrower with increasing the radial mode number. As compared to the case of plane wave illumination, sharper PNJs are more easily generated when irradiated by a higher-order RP beam, even for microspheres with lower refractive indices or larger radii. Our findings can promote potential applications of PNJs in a variety of fields including super-resolution microscopy, nanolithography, and optical data storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call