Abstract

In this paper, new upper bounds for the magnitudes of the zeros of polynomials are developed. These bounds are derived from the Cauchy classical bound applied to a new polynomial having zeros with magnitudes that are powers of those of the original polynomial. Lower and upper bounds for the minimum and maximum zeros of real polynomials with real zeros are also developed. Additionally, we derive Kantorovich like inequalities which are used to derive bounds for the condition number and for the eigen spread of real symmetric matrices. The proposed bounds are tested and compared with many existing bounds using several examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.