Abstract
Cooling of internal atomic and molecular states via optical pumping and laser cooling of the atomic velocity distribution, rely on spontaneous emission. The outstanding success of such examples, taken together with general arguments, has led to the widely held notion that radiative cooling requires spontaneous emission. We here show by specific examples and direct calculation, based primarily on breaking emission-absorption symmetry as in lasing without inversion, that cooling of internal states by external coherent control fields is possible. We also show that such coherent schemes allow us to practically reach absolute zero in a finite number of steps, in contrast to some statements of the third law of thermodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.