Abstract
In this paper, we present a Schwarz lemma at the boundary for analytic functions at the unit disc, which generalizes classical Schwarz lemma for bounded analytic functions. For new inequalities, the results of Jack's lemma and Hankel determinant were used. We will get a sharp upper bound for Hankel determinant $H_{2}(1)$. Also, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.