Abstract

In RB convection for fluids with Prandtl number $Pr\gtrsim 1$, rotation beyond a critical (small) rotation rate is known to cause a sudden enhancement of heat transfer which can be explained by a change in the character of the BL dynamics near the top and bottom plates of the convection cell. Namely, with increasing rotation rate, the BL signature suddenly changes from Prandtl--Blasius type to Ekman type. The transition from a constant heat transfer to an almost linearly increasing heat transfer with increasing rotation rate is known to be sharp and the critical Rossby number $Ro_{c}$ occurs typically in the range $2.3\lesssim Ro_{c}\lesssim 2.9$ (for Rayleigh number $Ra=1.3\times 10^9$, $Pr=6.7$, and a convection cell with aspect ratio $\Gamma=\frac{D}{H}=1$, with $D$ the diameter and $H$ the height of the cell). The explanation of the sharp transition in the heat transfer points to the change in the dominant flow structure. At $1/Ro\lesssim 1/Ro_c$ (slow rotation), the well-known LSC is found: a single domain-filling convection roll made up of many individual thermal plumes. At $1/Ro\gtrsim 1/Ro_c$ (rapid rotation), the LSC vanishes and is replaced with a collection of swirling plumes that align with the rotation axis. In this paper, by numerically studying Lagrangian acceleration statistics, related to the small-scale properties of the flow structures, we reveal that this transition between these different dominant flow structures happens at a second critical Rossby number, $Ro_{c_2}\approx 2.25$ (different from $Ro_{c_1}\approx 2.7$ for the sharp transition in the Nusselt number $Nu$; both values for the parameter settings of our present numerical study). When statistical data of Lagrangian tracers near the top plate are collected, it is found that the root-mean-square (rms) values and the kurtosis of the horizontal acceleration of these tracers show a sudden increase at $Ro_{c_2}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.