Abstract

One of the main limiting factors to the accuracy of large scale groundwater models is the scarcity of hydraulic data. High-resolution Airborne Electromagnetic Methods (AEM) are capable of mapping the electrical resistivity structure of the subsurface in great detail and covering large areas in short time and on a limited budget. As such, there is great potential in integrating AEM data in groundwater modeling as a supplementing source of an extensive amount of information. We have developed several novel techniques that in combination allows for bringing groundwater and AEM models much closer together, i.e.: (1) a novel, scalable inversion engine that allows the AEM inversion to handle arbitrarily large areas at a time; (2) the spatially-decoupled inversion approach, which decouples the inversion model from the acquisition points and can operate on the same grid/voxel cells as the groundwater model; (3) a custom regularization scheme that allows for producing geophysical models with sharp vertical/horizontal resistivity transitions. In this study we present the very first application of the sharp spatially-decoupled inversion on an AEM survey flown for improving the groundwater model in the Kasted area, in the north of Aarhus (Denmark).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.