Abstract

This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal recovery and low-rank matrix recovery. It is shown that if the measurement matrix A satisfies the RIP condition δkA<1/3, then all k-sparse signals β can be recovered exactly via the constrained ℓ1 minimization based on y=Aβ. Similarly, if the linear map M satisfies the RIP condition δrM<1/3, then all matrices X of rank at most r can be recovered exactly via the constrained nuclear norm minimization based on b=M(X). Furthermore, in both cases it is not possible to do so in general when the condition does not hold. In addition, noisy cases are considered and oracle inequalities are given under the sharp RIP condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.