Abstract

Abstract The Rabi-analogue splitting in nanostructures resulting from the strong coupling of different resonant modes is of importance for lasing, sensing, switching, modulating, and quantum information processes. To give a clearer physical picture, the phase analysis instead of the strong coupling is provided to explain the Rabi-analogue splitting in the Fabry-Pérot (FP) cavity, of which one end mirror is a metallic nanohole array and the other is a thin metal film. The phase analysis is based on an analytic model of the FP cavity, in which the reflectance and the reflection phase of the end mirrors are dependent on the wavelength. It is found that the Rabi-analogue splitting originates from the sharp phase variation brought by the plasmon mode in the FP cavity. In the experiment, the Rabi-analogue splitting is realized in the plasmonic-photonic coupling system, and this splitting can be continually tuned by changing the length of the FP cavity. These experimental results agree well with the analytic and simulation data, strongly verifying the phase analysis based on the analytic model. The phase analysis presents a clear picture to understand the working mechanism of the Rabi-analogue splitting; thus, it may facilitate the design of the plasmonic-photonic and plasmonic-plasmonic coupling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.