Abstract

The intrinsic volumes of a convex body are fundamental invariants that capture information about the average volume of the projection of the convex body onto a random subspace of fixed dimension. The intrinsic volumes also play a central role in integral geometry formulas that describe how moving convex bodies interact. Recent work has demonstrated that the sequence of intrinsic volumes concentrates sharply around its centroid, which is called the central intrinsic volume. The purpose of this paper is to derive finer concentration inequalities for the intrinsic volumes and related sequences. These concentration results have striking implications for high-dimensional integral geometry. In particular, they uncover new phase transitions in formulas for random projections, rotation means, random slicing, and the kinematic formula. In each case, the location of the phase transition is determined by reducing each convex body to a single summary parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.