Abstract

In this paper, the authors establish the sharp maximal estimates for the multilinear iterated commutators generated by BMO functions and multilinear singular integral operators with generalized kernels. As applications, the boundedness of this kind of multilinear iterated commutators on the product of weighted Lebesgue spaces and the product of variable exponent Lebesgue spaces can be obtained, respectively.

Highlights

  • 1 Introduction The multilinear singular integral operator theory plays an important role in the singular integral operator theory of harmonic analysis

  • More and more researchers have been interested in multilinear commutators

  • The multilinear commutator was given by Pérez and Trujillo-González in [ ]

Read more

Summary

Introduction

The multilinear singular integral operator theory plays an important role in the singular integral operator theory of harmonic analysis. Pradolini, Torres and Trujillo-González studied the multilinear iterated commutators of multilinear singular integrals with Calderón-Zygmund kernels in [ ]. They first established the sharp maximal estimates, the end-point estimates were acquired. The sharp maximal estimates of multilinear iterated commutators generated by BMO functions and multilinear singular integral operators with generalized kernels will be established in Theorem. These facts illustrate that our results obtained in this paper will improve most of the earlier conclusions by weakening the conditions of the kernel. T b(f , . . . , fm)(x) bj(x) – bj(yj) K (x, y , . . . , ym)f (y ) · · · fm(ym) dy · · · dym

We also denote
It can also be written as
The sharp maximal operator M is defined by
Rn λ
For some p
Then lδ ε and l δ
We have w
It follows from
For any

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.