Abstract

Several techniques are proposed for designing experiments in scientific and industrial areas in order to gain much effective information using a relatively small number of trials. Uniform design (UD) plays a significant role due to its flexibility, cost-efficiency and robustness when the underlying models are unknown. UD seeks its design points to be uniformly scattered on the experimental domain by minimizing the deviation between the empirical and theoretical uniform distribution, which is an NP hard problem. Several approaches are adopted to reduce the computational complexity of searching for UDs. Finding sharp lower bounds of this deviation (discrepancy) is one of the most powerful and significant approaches. UDs that involve factors with two levels, three levels, four levels or a mixture of these levels are widely used in practice. This paper gives new sharp lower bounds of the most widely used discrepancies, Lee, wrap-around, centered and mixture discrepancies, for these types of designs. Necessary conditions for the existence of the new lower bounds are presented. Many results in recent literature are given as special cases of this study. A critical comparison study between our results and the existing literature is provided. A new effective version of the fast local search heuristic threshold accepting can be implemented using these new lower bounds. Supplementary material for this article is available online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call