Abstract

A sharp interface Cartesian grid method for the large-eddy simulation of two-phase turbulent flows interacting with moving bodies is presented. The overall approach uses a sharp interface immersed boundary formulation and a level-set/ghost–fluid method for solid–fluid and fluid–fluid interface treatments, respectively. A four-step fractional-step method is used for velocity–pressure coupling, and a Lagrangian dynamic Smagorinsky subgrid-scale model is adopted for large-eddy simulations. A simple contact angle boundary condition treatment that conforms to the immersed boundary formulation is developed. A variety of test cases of different scales ranging from bubble dynamics, water entry and exit, landslide-generated waves, to ship hydrodynamics are performed for validation. Extensions for high Reynolds number ship flows using wall-layer models are also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.