Abstract
Sustainable management of small island freshwater resources requires an understanding of the extent of freshwater lens and local effects of pumping. In this study, a methodology based on a sharp interface approach is developed for regional and well scale modeling of island freshwater lens. A quasi-three-dimensional finite element model is calibrated with freshwater thickness where the interface is matched to the lower limit of the freshwater lens. Tongatapu Island serves as a case study where saltwater intrusion and well salinization for the current state and six long-term stress scenarios of reduced recharge and increased groundwater pumping are predicted. Though no wells are salinized currently, more than 50% of public wells are salinized for 40% decreased recharge or increased groundwater pumping at 8% of average annual recharge. Risk of salinization for each well depends on the distance from the center of the well field and distance from the lagoon. Saltwater intrusions could occur at less than 50% of the previous estimates of sustainable groundwater pumping where local pumping was not considered. This study demonstrates the application of a sharp interface groundwater model for real-world small islands when dispersion models are challenging to be implemented due to insufficient data or computational resources.
Highlights
Groundwater occurring in the form of a thin lens floating on denser seawater is the primary source of freshwater in most small islands [1]
Many small islands in the Pacific face groundwater shortages during droughts associated with El Niño—Southern Oscillation (ENSO) events [2] which are predicted to be frequent in the future due to global warming [4]
The objective of this work is to develop a methodology based on a sharp interface numerical model to conduct regional and well scale modeling of island freshwater lens under long-term stresses
Summary
Groundwater occurring in the form of a thin lens floating on denser seawater is the primary source of freshwater in most small islands [1]. This limited groundwater resource is highly vulnerable to saltwater intrusion due to natural causes such as droughts, storm surges, sea level rise, and anthropogenic activities such as increased groundwater withdrawals [2,3]. Management of groundwater withdrawal requires knowledge about the extent of freshwater lens and identification of wells that are under high risk of saltwater intrusion [6]. Regional and wellscale modeling of freshwater lens are essential for planning water management strategies in small islands
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.