Abstract

The cross-Wigner distribution $W(f,g)$ of two functions or temperate distributions $f,g$ is a fundamental tool in quantum mechanics and in signal analysis. Usually, in applications in time-frequency analysis $f$ and $g$ belong to some modulation space and it is important to know which modulation spaces $W(f,g)$ belongs to. Although several particular sufficient conditions have been appeared in this connection, the general problem remains open. In the present paper we solve completely this issue by providing the full range of modulation spaces in which the continuity of the cross-Wigner distribution $W(f,g)$ holds, as a function of $f,g$. The case of weighted modulation spaces is also considered. The consequences of our results are manifold: new bounds for the short-time Fourier transform and the ambiguity function, boundedness results for pseudodifferential (in particular, localization) operators and properties of the Cohen class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.