Abstract

AbstractClimate change may affect sediment fluvial export from high mountain regions, leading to downstream environmental disruptions and direct impacts on human activities. In this paper, three decades (1990–2020) of turbidity measurements, along with climate and hydro‐glaciological variables, were used to investigate the interannual and interdecadal variability in the number of extreme turbidity events (ETE) in the glacierized Maipo River basin, located in the western subtropical Andes. ETE are defined as a sequence of days (most often 1 or 2) during which the daily maximum turbidity was in the 99% quantile of the entire study period. Some of these events compromised the drinking water provision for the city of Santiago, with more than 6 million inhabitants. ETE are more frequent during summer and are mostly associated with melt‐favourable conditions. The number of ETE tends to increase in summers with large glacier ice melt and low snowmelt (outside or over glaciers). Most notable, the mean annual number of ETE exhibits a 6‐fold increase in the last decade compared with the 1990–2010 period. After 2010, ETE also shifted their seasonal maximum from late spring to mid‐summer and their occurrence became strongly coupled with large ice melt rates. We hypothesize that such regime change was caused by an enhanced hydrological connectivity of subglacial sediment pools that increased the sensitivity of the sediment system to glacier melt. The latter is in line with recent research and is consistent with the ongoing glacier retreat due to strong regional warming and drying.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.