Abstract
The heat kernel in the setting of classical Fourier-Bessel expansions is defined by an oscillatory series which cannot be computed explicitly. We prove qualitatively sharp estimates of this kernel. Our method relies on establishing a connection with a situation of expansions based on Jacobi polynomials and then transferring known sharp bounds for the related Jacobi heat kernel.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.