Abstract

A sharp regularity theory is established for homogeneous Gaussian fields on the unit circle. Two types of characterizations for such a field to have a given almost-sure uniform modulus of continuity are established in a general setting. The first characterization relates the modulus to the field's canonical metric; the full force of Fernique's zero-one laws and Talagrand's theory of majorizing measures is required. The second characterization ties the modulus to the field's random Fourier series representation. As an application, it is shown that the fractional stochastic heat equation has, up to a non-random constant, a given spatial modulus of continuity if and only if the same property holds for a fractional antiderivative of the equation's additive noise; a random Fourier series characterization is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.