Abstract
The focusing of an atomic beam with the use of a two-dimensional magneto-optical trap in order to increase the number of atoms in the region of their laser cooling and localization near an atom chip is discussed. Two regimes of the interaction of atoms with a focusing laser field are considered: (i) the Doppler interaction regime, which occurs at small detunings of the laser field from the atomic resonance, and (ii) the sub-Doppler interaction regime, which occurs at large detunings of the laser field from the atomic resonance. The efficiency of focusing in the first case is low because of the momentum diffusion. It has been shown that the momentum diffusion in the sub-Doppler cooling mechanism is insignificant and, as a result, the broadening of the transverse velocity distribution of atoms is small. The sharp focusing of the atomic beam is possible in this interaction regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.