Abstract

The focusing of an atomic beam with the use of a two-dimensional magneto-optical trap in order to increase the number of atoms in the region of their laser cooling and localization near an atom chip is discussed. Two regimes of the interaction of atoms with a focusing laser field are considered: (i) the Doppler interaction regime, which occurs at small detunings of the laser field from the atomic resonance, and (ii) the sub-Doppler interaction regime, which occurs at large detunings of the laser field from the atomic resonance. The efficiency of focusing in the first case is low because of the momentum diffusion. It has been shown that the momentum diffusion in the sub-Doppler cooling mechanism is insignificant and, as a result, the broadening of the transverse velocity distribution of atoms is small. The sharp focusing of the atomic beam is possible in this interaction regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call