Abstract

In this article, we study energy decay of the damped wave equation on compact Riemannian manifolds where the damping coefficient is anisotropic and modeled by a pseudodifferential operator of order zero. We prove that the energy of solutions decays at an exponential rate if and only if the damping coefficient satisfies an anisotropic analogue of the classical geometric control condition, along with a unique continuation hypothesis. Furthermore, we compute an explicit formula for the optimal decay rate in terms of the spectral abscissa and the long-time averages of the principal symbol of the damping over geodesics, in analogy to the work of Lebeau for the isotropic case. We also construct genuinely anisotropic dampings which satisfy our hypotheses on the flat torus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.