Abstract

It is shown that if we restrict the identity minus Hardy operator on the cone of nonnegative decreasing functions $f$ in $L^{p}$, then we have the sharp estimate \begin{equation*} \left \| (I-H)f\right \| _{L^p}\leq \frac {1}{(p-1)^{\frac {1}{p}}}\left \| f\right \| _{L^p} \end{equation*} for $p=2,3,4,....$ In other words, \begin{equation*} \left \| f^{**}-f^* \right \| _{L^p}\leq \frac {1}{(p-1)^{\frac {1}{p}}} \left \| f\right \| _{L^p} \end{equation*} for each $f \in L^p$ and each integer $p\ge 2$. It is also shown, via a connection between the operator $I-H$ and Laguerre functions, that \begin{equation*} \|(1-\alpha ) I+\alpha (I-H)\|_{L^2\to L^2}=\|I-\alpha H\|_{L^2\to L^2}=1 \end{equation*} for all $\alpha \in [0,1]$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call