Abstract
We prove genuinely sharp estimates for the Jacobi heat kernels introduced in the context of the multidimensional cone Vd+1 and its surface V0d+1. To do so, we combine the theory of Jacobi polynomials on the cone explored by Xu with the recent techniques by Nowak, Sjögren, and Szarek, developed to find genuinely sharp estimates for the spherical heat kernel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.