Abstract
Given harmonic mappings <italic>f</italic>(<italic>z</italic>) = <italic>h</italic>(<italic>z</italic>) + <italic>g</italic>(<italic>z</italic>) on the unit disk <italic>D</italic> ={<italic>z</italic>||<italic>z</italic>|< 1}, where <italic>h</italic>(<italic>z</italic>) and <italic>g</italic>(<italic>z</italic>) are analytic functions on the unit disk <italic>D</italic>, with <italic>f</italic>(0) = 0, λ<sub><italic>f</italic></sub> (0) = 1 and Λ<sub><italic>f</italic></sub>≤Λ, by introducing one complex parameter λ, we consider the properties for the harmonic mappings <italic>F</italic><sub>λ</sub>(<italic>z</italic>) = <italic>h</italic>(<italic>z</italic>) + λ<italic>g</italic>(<italic>z</italic>) and analytic functions <italic>G</italic><sub>λ</sub>(<italic>z</italic>) = <italic>h</italic>(<italic>z</italic>)+ λ<italic>g</italic>(<italic>z</italic>) with |λ|= 1 and obtain the sharp estimate on univalent radius for <italic>F</italic><sub>λ</sub>(<italic>z</italic>) and <italic>G</italic><sub>λ</sub>(<italic>z</italic>). As an application, we also obtain a better estimate on Bloch constant for some <italic>K</italic>-quasiregular harmonic mappings on the unit disk <italic>D</italic>. Our results generalize and improve the one made by Chen et al. (2000).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.