Abstract

This paper derives sharp estimates of the error arising from explicit and implicit approximations of the constant-coefficient 1D convection‐diffusion equation with Dirac initial data. The error analysis is based on Fourier analysis and asymptotic approximation of the integrals resulting from the inverse Fourier transform. This research is motivated by applications in computational finance and the desire to prove convergence of approximations to adjoint partial differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.