Abstract
We derive sharp bounds for the accuracy of approximate eigenvectors (Ritz vectors) obtained by the Rayleigh-Ritz process for symmetric eigenvalue problems. Using information that is available or easy to estimate, our bounds improve the classical Davis-Kahan $\sin\theta$ theorem by a factor that can be arbitrarily large, and can give nontrivial information even when the $\sin\theta$ theorem suggests that a Ritz vector might have no accuracy at all. We also present extensions in three directions, deriving error bounds for invariant subspaces, singular vectors and subspaces computed by a (Petrov-Galerkin) projection SVD method, and eigenvectors of self-adjoint operators on a Hilbert space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.