Abstract
By combining atom lithography and plasma etching technology in a two-step process, we demonstrate the transfer of sharp edged structures into silicon with a depth of 580 nm and an inclination of better than 86°. A self-assembled monolayer resist deposited on a Au-coated Si surface is damaged by a beam of metastable helium atoms through a physical mask. A wet etching process removes Au in the damaged regions, resulting in an intermediate mask of patterned Au on Si. Low-pressure plasma etching is then used to transfer the pattern of the Au mask into the Si. This plasma etching process shows a selectivity greater than 19 with respect to the Au mask.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.