Abstract

AbstractThe Peyrard-Bishop DNA model describes the molecular interactions with simple potentials which allow efficient calculations of melting temperatures. However, it is based on a Hamiltonian that does not consider the helical twist or any other relevant molecular dimensions. Here, we start from a more realistic 3D model and work out several approximations to arrive at a new non-linear 1D Hamiltonian with a twist angle dependence. Our approximations were numerically compared to full 3D calculations, and established its validity in the regime of small angles. For long DNA sequences we obtain sharp, first-order-like melting, transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call