Abstract

Conditions of sharp distillation were considered for zeotropic quaternary system (two pairs of components are characterized by relative volatility close to 1) and systems with one (with minimum or maximum boiling point) and two (with minimum and maximum boiling point) binary azeotropes. Regions of compositions for which sharp distillation is effective (distillate and bottom flows don't contain common components) were determined on the basis of analyzing diagrams of unit manifolds of distribution coefficients (distribution coefficients of two components are higher than one, and those of another two components - lower than one). This kind of separation can be recommended if it doesn’t cause an increase in the number of apparatuses in the separation flowsheet. If the system contains azeotropes of saddle type that can generate separatric manifolds, the possibility and expedience of sharp separation decreases. The conclusions were confirmed by simulation of the distillation process in AspenPlus V.10.0 for real and industrially important quaternary systems: ethyl acetate - benzene - toluene - butyl acetate; acetone - methanol - ethanol - propanol-2; methyl acetate - methanol - acetic acid - acetic anhydride and cyclohexene - cyclohexane - cyclohexanone - phenol. Mathematical modeling was carried out using local compositions models Wilson and NRTL-HOC. The relative error of vapor-liquid equilibrium description is less than 4%. The vapor-liquid equilibrium was simulated, a phase diagram was constructed and analyzed, the parameters of sharp distillation column operation (the number of stages, the feed-stage and reflux ratio) were determined for all systems. The effectiveness of using sharp distillation for the system with phenol was confirmed for a wide range of compositions.

Highlights

  • Conditions of sharp distillation were considered for zeotropic quaternary system and systems with one and two binary azeotropes

  • The conclusions were confirmed by simulation of the distillation process in AspenPlus V.10.0 for real and industrially important quaternary systems: ethyl acetate – benzene – toluene – butyl acetate; acetone – methanol – ethanol – propanol-2; methyl acetate – methanol – acetic acid – acetic anhydride and cyclohexene – cyclohexane – cyclohexanone – phenol

  • Mathematical modeling was carried out using local compositions models Wilson and NRTL-HOC

Read more

Summary

ПРОМЕЖУТОЧНОЕ ЗАДАННОЕ РАЗДЕЛЕНИЕ ПРИ РЕКТИФИКАЦИИ ЧЕТЫРЕХКОМПОНЕНТНЫХ СМЕСЕЙ

Определены условия реализации промежуточного заданного разделения для четырехкомпонентных зеотропных систем (две пары компонентов характеризуются относительной летучестью компонентов, близкой к единице) и систем с одним (положительным или отрицательным) и двумя (положительным и отрицательным) бинарными азеотропами. Если в системе присутствуют азеотропы седловидного типа, порождающие сепаратрические многообразия, возможность и целесообразность применения промежуточного заданного разделения резко сокращается. Для всех систем проведен расчет парожидкостного равновесия, построены и проанализированы диаграммы фазового равновесия, определены параметры работы ректификационной колонны (число теоретических тарелок, тарелка питания, флегмовое число), работающей в режиме промежуточного разделения смесей заданного состава. Для системы с фенолом подтверждена эффективность применения промежуточного разделения в широком диапазоне концентраций. Ключевые слова: ректификация, промежуточное разделение, равновесие жидкость– пар, азеотроп, относительная летучесть компонентов. Промежуточное заданное разделение при ректификации четырехкомпонентных смесей // Тонкие химические технологии / Fine Chemical Technologies.

Промежуточное заданное разделение при ректификации четырехкомпонентных смесей
Теоретическая часть
Расчетные данные
Findings
ТП этилацетат бензол толуол
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call