Abstract

Given a real projective curve with homogeneous coordinate ring R and a nonnegative homogeneous element f∈R, we bound the degree of a nonzero homogeneous sum of squares g∈R such that the product fg is again a sum of squares. Better yet, our degree bounds only depend on geometric invariants of the curve and we show that there exist smooth curves and nonnegative elements for which our bounds are sharp. We deduce the existence of a multiplier g from a new Bertini Theorem in convex algebraic geometry and prove sharpness by deforming rational Harnack curves on toric surfaces. Our techniques also yield similar bounds for multipliers on surfaces of minimal degree, generalizing Hilbert's work on ternary forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.