Abstract

Sharp temporal decay estimates are established for the gradient and time derivative of solutions to the Hamilton-Jacobi equation $\partial_t {v_\varepsilon} + H(|\nabla_x {v_\varepsilon} |)= \varepsilon \Delta {v_\varepsilon}$ in ${\mathbb{R}^N\times(0,\infty)}$, the parameter $\varepsilon$ being either positive or zero. Special care is given to the dependence of the estimates on $\varepsilon$. As a by-product, we obtain convergence of the sequence $({v_\varepsilon})$ as $\varepsilon\to 0$ to a viscosity solution, the initial condition being only continuous and either bounded or nonnegative. The main requirement on $H$ is that it grows superlinearly or sublinearly at infinity, including in particular $H(r)=r^p$ for $r\in [0,\infty)$ and $p\in (0,\infty)$, $p\ne 1$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.