Abstract

We propose a consistent estimator of sharp bounds on the variance of the difference-in-means estimator in completely randomized experiments. Generalizing Robins [Stat. Med. 7 (1988) 773-785], our results resolve a well-known identification problem in causal inference posed by Neyman [Statist. Sci. 5 (1990) 465-472. Reprint of the original 1923 paper]. A practical implication of our results is that the upper bound estimator facilitates the asymptotically narrowest conservative Wald-type confidence intervals, with applications in randomized controlled and clinical trials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.