Abstract
We prove sharp bounds on the enstrophy growth in viscous scalar conservation laws. The upper bound is, up to a prefactor, the enstrophy created by the steepest viscous shock admissible by the L∞ and total variation bounds and viscosity. This answers a conjecture by Ayala and Protas (2011 Physica D 240 1553–63), based on numerical evidence, for the viscous Burgers equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.