Abstract

The hyper-Zagreb index is an important branch in the Zagreb indices family, which is defined as∑uv∈E(G)‍(d(u)+d(v))2, whered(v)is the degree of the vertexvin a graphG=(V(G),E(G)). In this paper, the monotonicity of the hyper-Zagreb index under some graph transformations was studied. Using these nice mathematical properties, the extremal graphs amongn-vertex trees (acyclic), unicyclic, and bicyclic graphs are determined for hyper-Zagreb index. Furthermore, the sharp upper and lower bounds on the hyper-Zagreb index of these graphs are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.