Abstract

Consider an absolutely continuous distribution on [0, ∞) with finite meanμand hazard rate functionh(t) ≤bfor allt. Forbμclose to 1, we would expectFto be approximately exponential. In this paper we obtain sharp bounds for the Kolmogorov distance betweenFand an exponential distribution with meanμ, as well as betweenFand an exponential distribution with failure rateb. We apply these bounds to several examples. Applications are presented to geometric convolutions, birth and death processes, first-passage times, and to decreasing mean residual life distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.