Abstract
We prove some simple and sharp lower and upper bounds for the Erlang delay and loss formulae and for the number of servers that invert the Erlang delay and loss formulae. We also suggest simple and sharp approximations for the number of servers that invert the Erlang delay and loss formulae. We illustrate the importance of these bounds by using them to establish convexity proofs. We show that the probability that the M/M/s queue is empty is a decreasing and convex function of the traffic intensity. We also give a very short proof to show that the Erlang delay formula is convex in the traffic intensity when the number of servers is held constant. The complete proof of this classical result has never been published. We also give a very short proof to show that the Erlang delay formula is a convex function of the (positive integer) number of servers. One of our results is then used to get a sharp bound to the Flow Assignment Problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.